

Agenda

Introduction

What is an extrados bridge

Principles, aesthetics, and behavior

Case studies (Arup recent experience):

Case Study 1. RFK over the River Barrow (Ireland)

Case study 2. Tawatinâ bridge (Edmonton, Canada)

Concept design and key details. Construction processes and issues

Conclusions

Speaker's introduction and experience

RFK river Barrow

Marcos Sanchez

Kwidzyn bridge (*)

© Structurae

River Erne(*)

© RoD

Thierry Duclos Akio Kasuga José Romo Martír Serge Montens Chithambaram Sankaralingam Juan Sobrino

ARUP

Presenter's experience on Extrados bridges

Introduction to extrados bridges

Jaques Mativat concept, 1988

Introduction to extrados bridges

Extrados bridges. General

ARUP

Introduction to extrados bridges

Main dimensions of Continuous box, extrados and cable stayed bridges (Source IABSE SED 17)

ARUP

Extrados bridges. General

Introduction to extrados bridges

Cable stress range vs maximum stress in cables (Source IABSE SED 17)

Cable stress range vs maximum stress in cables (Source PTI DC45.1-12)

MUTS= 1860 mPa = 270 ksi

ARU

0.175

Introduction to extrados bridges

Summary

- Cable system technology of cable stayed bridges
- Hybrid behaviour (box stiffness vs cable system)
- Shallower cable than in cable stayed bridges
 - Cable less efficient => Deeper deck or tapered at supports. Lower range of cable stresses => Higher Stress limit allowed (?)
 - Higher deck compressions close to supports => High strength concrete
 - Shorter tower => Saddles vs anchor box
- A stiffer deck allows for multispan bridges with multiple towers

Introduction to extrados bridges

Why extrados bridges?

Aesthetics. Geometry constraints. Multispan. Cost compromise

Extrados bridges. General

Introduction to extrados bridges

Why extrados bridges?

Aesthetics. Geometry constraints. Multispan. Cost compromise

Extrados bridges. General

Case Studies

RFK River Barrow

Tawatinâ

Case Studies

Case Study 1 Rose Fitzgerald Kennedy bridge over the river Barrow

American Segmental Bridge Anstitut Case Study Rose Fitzgerald Kennedy bridge over the river Barrow

ARI

Case Study: RFK over the River Barrow

John Fitzgerald Kennedy Homestead

1000 ft

Case Study: RFK over the River Barrow

Approx. Location of Crossing

Water Carles Barry

RFK over the River Barrow. General Description

Case Study: RFK over the River Barrow

Architectural concept (planning stage)

Case Study: RFK over the River Barrow

Constraints (planning stage)

Design and Construction of Concrete Segmental Extradosed Bridges *Case Study: RFK over the River Barrow*

Specimen design. Pre D&C Tender

RFK over the River Barrow. General Description

Case Study: RFK over the River Barrow

Value Engineering

- Change cross section
 - central webs @ 8m spacing
 - precast slabs/props to reduce the cantilever
- Minimize bridge width:
 - Pilon width 1.6m (5.2 ft)
 - Single cable max 127 strands
 - Minimum cable spacing 6.5m (21 ft)
- Optimize elevation layout
 - Tower height 27 and 17m
 - Depth 6.5 and 8.0m at towers.
 - Depth 3.5m for the rest of the bridge

Slenderness: L/65 at midspan, L/28 at central tower and L/35 at side towers

Final Solution

Case Study: RFK over the River Barrow

Case Study: RFK over the River Barrow

- Total length 887m (311ft + 755 ft + 755 ft + 311 ft)
- 9 spans (36 m + 45 m + 95 m + 230 m + 230 m + 95 m + 70 m + 50 m + 36 m)(main spans very slender L/65 at midspan and L/35 & L/28 at towers)
- West and East approach spans 70 to 36m
- Main supported by parallel inclined cables, single vertical central plane
- Full concrete deck with a closed cross section
- Tower height and main supports (P3-P4-P5) fixed by planning
- Single central plane of cables

Case Study: RFK over the River Barrow

M6 Ostroda Motorway. Poland. 2018.

Full concrete deck. Main span 206m

Kiso Gawa. Japan. 2001.

Steel composite (midspan) deck. Main span 275m

RFK over the River Barrow. General Description

American Segmental Bridge Institut

Case Study Rose Fitzgerald Kennedy bridge over the river Barrow

ARUP

General

Case Study: RFK over the River Barrow

RFK over the River Barrow. Detailed design. Global behaviour

Case Study: RFK over the River Barrow

Case Study: RFK over the River Barrow

ARUP

Case Study: RFK over the River Barrow

Concrete stresses top flange. Permanent Loads.

(40 Mpa = 6 Ksi)

RFK over the River Barrow. Detailed design. Global behaviour

Case Study: RFK over the River Barrow

ARUP

RFK over the River Barrow. Detailed design. Global behaviour

Case Study: RFK over the River Barrow

ARUP

Case Study: RFK over the River Barrow

RFK over the River Barrow. Detailed Design. Transversal PT

Case Study Rose Fitzgerald Kennedy bridge over the river Barrow

ARUP

General

Case Study: RFK over the River Barrow

Superstructure construction:

- Approach spans, including extrados side spans: Scaffold and wing traveller
- Main spans. Full section form Traveller (4 fronts)

Temporary Props

Push-Pull Prop (prestressed)

Case Study: RFK over the River Barrow

Approach Spans Construction

Case Study: RFK over the River Barrow

Approach Spans Construction

RFK over the River Barrow. Construction

Case Study: RFK over the River Barrow

Approach Spans Construction

Case Study: RFK over the River Barrow

Case Study: RFK over the River Barrow

Geometry control uncertainties

- 1. Form Traveller settlement / deflection
- 2. Segment Weights (concrete density)
- 3. Concrete Young modulus (time dependant)
- 4. Creep and Shrinkage curves
- 5. Construction loads map
- 6. Real segment Cycle

Modelling

- A. Two independent models
- B. If possible, slightly different assumptions
- C. Sensitivity checks
- **D.** Update model properties with real information

American Segmental Bridge Instit

ARUP

Case Study: RFK over the River Barrow

Geometry Control

Design and Construction of Concrete Segmental Extradosed Bridges Case Study: RFK over the River Barrow American Segmental Bridge Institut **Geometry Control** 18x6.5m 4x4.5m 12m-0.90 -1.0 **Cantilever Construction Cycle (optimum time 7-12 days)** 1. Stressing of cantilever PT or bars in segment "n-1" (**36h** or 30N/mm2) 2. Form traveller movement and setting out for segment "n" 3. Bottom slab & Webs rebar and post-tensioning fixing 4. Internal Props and form tube for the main cable fixing 5. 0- 50% Stressing of cable in segment "n-2" STEEL STRUTS ee detail B -STEEL STRUTS 6. Installation of precast panels 7. Top Slab transversal posttensioning and rebar fixing 8. Stressing of transversal PT in segment "n-2" & part of "n-1" 9. 50-100% Stressing of cable in segment "n-2" n-1 n-2 10. Casting of Segment n

RFK over the River Barrow. Construction

Case Study: RFK over the River Barrow

RFK over the River Barrow. Construction

Case Study: RFK over the River Barrow

Real

Programme

Segment Construction time

ARUP

RFK over the River Barrow. Geometry Control

Case Study: RFK over the River Barrow

American Segmental Bridge Institute

Deflections due to cable stressing (upwards). Cable 12

RFK over the River Barrow. Geometry Control

ARUP

Case Study: RFK over the River Barrow

RFK over the River Barrow. Geometry Control

Case Study: RFK over the River Barrow

RFK over the River Barrow. Detailed design. Global behaviour

Case Study: RFK over the River Barrow

RFK over the River Barrow. Detailed design. Global behaviour

Case Study Rose Fitzgerald Kennedy bridge over the river Barrow

Case Study: RFK over the River Barrow

SCALE 1:1500

Design and Construction of Concrete Segmental Extradosed Bridges *Case Study: RFK over the River Barrow*

RFK over the River Barrow. Structural Health Monitoring

Case Study 2 Tawatinâ Bridge over the North Saskatchewan River

Case Study 2 Tawatinâ Bridge over the North Saskatchewan River

(165')

Span Length – 110m or 220m? (360' or 720')

Case Study 2 Tawatinâ Bridge over the North Saskatchewan River

Table 5.1 Type of anchorages in pylon

		Unfactored	
		Live + Wind	
		Stress /	
Cable ID	# Strands	MUTS	Ø
1 (Shortest)	39 (Size 43 anchorage)	0.049	0.70
2		0.046	0.71
3		0.040	0.72
4		0.033	0.73
5		0.024	0.75
6		0.020	0.75
7 (Longest)		0.021	0.75

Fig. 5.1—Strength resistance factors ϕ .

5.12.5—Segmental Concrete Bridges

5.12.5.3.2—Construction Loads

WUP = wind uplift on cantilever: 0.005 ksf of deck area for balanced cantilever construction applied to one side only, unless an analysis of site conditions or structure configuration indicates otherwise (ksf)

Ameri Case Study 2 Tawatinâ Bridge over the North Saskatchewan River

Segment Construction Time (for a pair of segments)

Conclusion

- Extradosed bridges are an intermediary between girder and cable stayed bridges
- Useful in the span range between 300' to 800' (between girder and cable stayed)
- Generally more expensive than girder bridges but can competitive for some projects
- Cables have a smaller live load stress range allowing for higher phi factor
- Definition of cross section and position of cables in the deck should be chosen carefully
- Shorter, smaller and simpler pylons can be built using saddles
- Extradosed bridges are typically longer span bridges that require particular attention to wind effects and geometry control during construction

Design and Construction of Concrete Segmental Extradosed Bridges

